6.3 KiB
Executable file
FEEEDFARM
Modes of Operation
rendering X learning X mining
1/ AI how?
2/ 3D]
3/ coins ?
GeForce GTX 1080 Ti
Specs
Maximum Graphics Card Power (W) 250
Cores
CUDA Cores 3584
Graphics Clock (MHz) 1480
Processor Clock (MHz) 1582
Memory
Standard Memory Config 11 GB GDDR5X Memory Interface Width 352-bit Memory Bandwidth (GB/sec) 11 Gbps
Supported Technologies
SLI, CUDA, 3D Vision, PhysX, NVIDIA G-SYNC™, GameStream, ShadowWorks, DirectX 12, Virtual Reality, Ansel
Questions
Interkonektivity via SLI
sli becomes NVlink
https://en.wikipedia.org/wiki/Scalable_Link_Interface
SLI allows two, three, or four graphics processing units (GPUs) to share the workload when rendering real-time 3D computer graphics.
Not all motherboards with multiple PCI-Express x16 slots support SLI.
https://www.gpumag.com/nvidia-sli-and-compatible-cards/
High-Bandwidth Bridge or SLI HB Bridge (650 MHz Pixel Clock and 2GB/s Bandwidth) – This is the fastest bridge and is sold exclusively by Nvidia. It’s recommended for monitors up to 5K and surround. SLI HB Bridges are only available in 2-way configurations.
resume?
-
SLI and nvidia quadro?
VRam share?
- is it possible?
Machine Learning
Hardware setup
- https://blog.slavv.com/the-1700-great-deep-learning-box-assembly-setup-and-benchmarks-148c5ebe6415 !!!
- https://medium.com/the-mission/how-to-build-the-perfect-deep-learning-computer-and-save-thousands-of-dollars-9ec3b2eb4ce2
- http://guanghan.info/blog/en/my-works/building-our-personal-deep-learning-rig-gtx-1080-ubuntu-16-04-cuda-8-0rc-cudnn-7-tensorflowmxnetcaffedarknet/
- https://www.servethehome.com/deeplearning10-the-8x-nvidia-gtx-1080-ti-gpu-monster-part-1/
- multi gpus
- cluster networking
3D
Blender
sheepit
- cant manage plenty of stuff
render farms
- https://www.videomaker.com/article/c01/18933-make-a-render-farm-out-of-old-computers-for-a-cost-effective-way-to-speed-up-rendering
- https://www.toolfarm.com/tutorial/in_depth_render_farms-2/
davinci resolve
- windows video tutorial
- linux video tutorial
- DaVinci Resolve Remote Render Server Complete Guide (Windows/Linux)
AI
#incubation https://www.makeuseof.com/4-unique-ways-to-get-datasets-for-your-machine-learning-project/
spleeter
!!!! #incubation !!!! EASYTOGO
incubation.openAI
jukebox
- 16gb VRAM?
- https://github.com/openai/jukebox
- https://www.theverge.com/2020/4/30/21243038/openai-jukebox-model-raw-audio-lyrics-ai-generated-copyright
- https://github.com/openai/jukebox/issues/136
openAI gym
tools.magenta
tensorflow
- https://www.tensorflow.org/tutorials/generative/dcgan
- https://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
EBsynth
runwayML
coins
- Efektivni vs. efektni?
- bitcoin? ethereum ?
??????? ??????? ??????? ??????? ??????? ??????? ??????? ??????? ???????
Hardware
motherbords
new
- 2 way sli? ? ? ?
aukro
- https://aukro.cz/asus-p8z68-v-socket-1155-ivy-bridge-sandy-bridge-ready-zaruka-6980209156
- https://aukro.cz/asus-crosshair-iv-formula-amd-890fx-rozjede-i-fx-procesory-6978083856
- !!! https://aukro.cz/asus-p9x79-deluxe-intel-engineering-sample-q8av-i7-2490x-3960x-6980118152 !!!
- !!!!! https://aukro.cz/zakladni-deska-cpu-ram-pouzita-plne-funkcni-6980112877 !!!!!
with quad SLI //VR solution
sorted by SLI capabilites
- 16/16/8/8
-
16/8/8/8 - socket LGA 2011
4 PCI-E 3.0 x16 2 PCI-E 2.0 x1 (in x4 slot), , \*\*\*4 PCI-E3.0x16 slots are running at 16/16/NA/8 or 16/8/8/8\*\*\* \*\*\*PCI-E slot #1 supports (x4) and slot #4 (x16) is disabled when Intel Core i7-5820K , i7-6800K or any processors with only 28 lanes is installed\*\*\*\*\*\*PCI-E slot #1 supports (x4) and slot #4 (x16) is disabled when Intel Core i7-5820K , i7-6800K or any processors with only 28 lanes is installed\*\*\*
- https://www.senetic.cz/product/MBD-C7X99-OCE-O
- 8000,-
- 16/16/16/16 - socket 2099
Summary
Speed of PCI connections is important. Speed of 8x seems like minimum for rendering and machine learning. PCI lanes need to offered by motherboard and also CPU.
The pci slots may not operate full bandwith even in case they offer the right hardware slot. Also motheboard dependend. Asus seems to be greatly specific with their motherboards.